Table. Digestibility and energy concentrations in DDGS-HP and DDGS-CV

	DDGS			
Item	DDGS-HP	DDGS-CV	SEM	P-value
SID of Lys, %	76.2	69.5	1.7	0.020
SID of Met, %	87.2	83.3	1.1	0.026
SID of Phe, %	85.5	81.8	1.0	0.022
ATTD of GE, %	77.8	75.3	2.1	0.001
DE, kcal/kg	3,826	3,568	83	0.008
ME, kcal/kg	3,698	3,426	87	0.023

ME in conventional distillers dried grains with solubles (DDGS-CV) and in high-protein distillers dried grains with solubles (DDGS-HP) that was produced by Lincolnway Energy, Nevada, IA under the name PureStream ProteinTM. In Exp. 1, 18 barrows (initial BW: 72.5 ± 9.2 kg) with a T-cannula installed in the distal ileum were allotted to a completely randomized design with 3 diets and 6 replicate pigs per diet. A N-free diet and 2 diets containing DDGS-CV or DDGS-HP as the sole source of CP and AA were formulated. Diets were fed to pigs for 7 d and ileal digesta were collected on d 6 and 7. A greater (P < 0.05) SID of some AA was calculated for DDGS-HP compared with DDGS-CV (Table 1). In Exp. 2, 24 barrows (initial BW: 52.8 ± 2.6 kg) were housed individually in metabolism crates and randomly allotted to 1 of 3 diets. A corn-based basal diet (97.25% corn) and 2 diets that contained corn and DDGS-CV or corn and DDGS-HP were formulated. Feces and urine were collected for 5 d following a 7-d adaptation period. The DE and ME in DDGS-HP on an as-fed basis were greater ($P \le 0.05$) than in corn and DDGS-CV, but the ATTD of GE in DDGS-HP and DDGS-CV were less $(P \le 0.01)$ than in corn. In conclusion, the SID of some AA and the concentrations of DE and ME in DDGS-HP is greater than in DDGS-CV when fed to growing pigs.

Key Words: digestibility, energy, distillers dried grains and solubles

324 High-Protein Distillers Dried Grains with Solubles Produced Using a Novel Front-End-Back-End Fractionation Technology Has Greater Nutritional Value Than Conventional Distillers Dried Grains with Solubles When Fed to Growing Pigs. C. D. Espinosa*, H. H. Stein, University of Illinois Urbana-Champaign, Urbana, IL

Two experiments were conducted to determine digestibility of AA, GE, and concentration of DE and